

Lifting the world with power electronics sept 2023

Darío Rubio – Account Manager

drubio@epicpower.es

Power electronics and its role in energy intelligence

A little bit of history

Westinghouse (and Tesla)

Thomas A. Edison

Important factors in the decision

But....The world is changing

MIT	Log in / Register Search Q					
Review	Topics+	The Download	Magazine	Events	More+	

Business Report

Edison's Revenge: The Rise of DC Power

In a world of more electronics and solar energy, there's less and less need for AC power.

by Peter Fairley April 24, 2012

Golfon am Bhonographen. (Rach einer Bhotographie.

Source: MIT Technology Review. April 24, 2012

Daily chart

Graphic detail

The use of renewable energy is accelerating

But still not quickly enough to offset the use of fossil fuels

Green shoots

World, renewable energy capacity additions, GW

Bloomberg New Energy Finance

Australia, Germany, Japan, Brazil – most decentralized

Decentralization ratio

Decentralization = $\frac{Non-grid\ capacity}{Total\ capacity}$

Source: Bloomberg New Energy Finance, New Energy Outlook 2017

Where is all this energy created from renewable sources used?

<complex-block>

Frequency drives

Telecom

EV charging

Energy transition requires renewables, what about storage?

Challenges:

- Maximize production
- Include storage and control
- Ensure grid reliability with fluctuations

Source: https://www.solarquotes.com.au/

Storage technologies, all in DC

Green hydrogen as an energy vector, electrolyzer and fuel cell, all in DC.

Water electrolysis

Is so much conversion really necessary?

AC/DC. Gerard Huerta. 1977

The world needed the development of a configurable DCDC transformer.

Power Electronics applied to energy conversion / control

Source: Muhammad H.Rashid. Power Electronics Handbook. 2001

We believe in a

#dcpoweredfuture

FOCUS: Developing bidirectional DCDC converters beyond the state-of-the-art

R&D engineering, design, manufacturing, certification and support

Intertek

The growth potential of DC/DC converters

DC networks are becoming more and more common

DCDC converters market growth forecast

DC-DC Converters Market, 2020-2029, in USD Billion

Mercado de convertidores DC-DC | Consultoría de Exactitud

Accumulating knowledge in power electronics DCDC conversion for 12 years

Where are the *epic power* converters?

Providing solutions in over 40 countries

Competitive advantages

Vertical operation

Complete control of each converter

Research

Certification

Design

Production & Support

Design

Hardware capabilities

- Silicon Carbide technology
- High-frequency magnetics
- Isolation and Non-Isolation topologies
- High efficiency up to 99.3%.

Control capabilities

- Power, Current, Voltage and custom regulations
- Fast response and accurate control
- MPPT function on both sides

Competitive advantages

Highest efficiency

 Efficiencies up to 99.3% world top in bi-directional configurations

Control strategy

 Control developed for fast step response, less than 1 ms in current control mode

Competitive advantages

Modular rackable design and excellent power density per kg

MPPT function in the both sides of the converter

Bidirectional DC/DC Converters for

What would happen if we offered a joint solution?

Existing or new solar installations require integrate energy storage

Energy storage in existing installation with the possibility of adding more power.

Different storage technologies have very different characteristics

Energy storage mixing different voltages and technologies

Lithium and Lead-Acid hybridization

Need to integrate EV chargers in industrial installations

Figure 6. Global LDV Electric Vehicles sales, 2015–2030

Source: The Economist. Sizing the Energy Transition, 2021

Solar + energy storage + Bidirectional EV Charger

Example of Bidirectional EV Charger installation

Bidirectional EVSE (Electric Vehicle Supply Equipment) epic power facilities in Zaragoza, Spain

The green H2 works in DC

Are electrolyzers and fuel cells that different?

Electrolyzer stack

Fuel Cell Stack

36

Are electrolyzers and fuel cells that different?

- Electroyzers only work when renewables are available
- Fuel cell is only used when the electrolyzer is off -

Electrolyzer + Fuel Cell with one bidirectional converter

With our help you will achieve all your goals

The possibilities are endless

Inverter AC Loads \sim POWER Grid Critical AC Loads .1 0-20 •••• 30 ECI = ÷ BUS DC 336-430 Vcc __ ___ DCDC MPPT Function Battery 336 Vcc ₩. A ሓሓ ~~ Fuel Cell Super-capacitor Electrolyzer Battery from 24 to 1200 Vcc

epic power converters S.L.

drubio@epicpower.es

www.epicpowerconverters.com

Our solutions

Bidirectional DC/DC converter range

Model	lsolated	High side Voltage [Vdc]	Low side Voltage [Vdc]	Power per unit [kW]
EPC 3k5 648i	~	510-848	38-59	3.5
EPC 5k5 648i	~	510-848	38-59	5.5
EPC 2k2 624i	~	510-848	19-30	2.2
EPC 2k2 348i	~	280-450	38-59	2.2
EPC 2k2 324i	~	280-450	19-30	2.2
EPC 4k8 6125i	~	430-830	110-165	4.8
EPC 7k 670i	~	510-848	40-80	7
EPC 8k 8380i	~	650-800	280-600	8
EPC 50A 0848		50-848	0-798	up to 40
EPC 50A 1200		50-1200	0-1150	up to 57

